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ABSTRACT
Diffusion flow models used to simulate hydrologic systems can become inaccurate un-
der certain extreme flow conditions. Two such flow conditions include the relatively
deep low slope flow condition as in the case of stagnant canals and the relatively shal-
low steep flow condition as in the case of mountain streams. In the case of relatively
deep slow flows and short term simulations, the inertia effects are important, and full
shallow water equations are needed to solve this problem. However, in the case of steep
slopes, even if inertia terms can be neglected, long term simulations become problem-
atic because of the need of fully implicit diffusion models to use small time steps when
using kinematic flow. Many of the long term physically based hydrologic models for
surface flow have to deal with meshes or cells when simulating irregular bottom slopes.
These models need to trap water in deep ponds and pass water over steep slopes at
the same time, creating conditions that are difficult to solve with models using only
the diffusion flow approximation. Numerical methods that are stable with large time
steps and small cells under both diffusion and kinematic flow conditions are needed in
solving such problems.

The current paper describes a stable computational approach that can be useful
in solving both kinematic and diffusion problems. A fully implicit finite volume for-
mulation of the approximate St. Venant equations is used in the formulation. Newton’s
method is applied to solve the nonlinear equation resulting from this approach. The
paper demonstrates the stability and the boundedness of the approach when using very
large time steps of the order of days.

INTRODUCTION
The capabilities that are important for long term physically based surface water models
using finite volume and finite element methods include the ability to (a) simulate both
the kinematic and diffusion flows over steep and flat terrains using large time steps; (b)
collect the correct amount of flow into basins defined by the cells or the mesh represent-
ing topography; (c) divert the correct volume of water into the streams that eventually
flow into the ocean along the correct path, (d) collect the correct volume of water in
ponds and wetlands created by the topography. Such models are not designed to focus
on (i) the ability to provide detailed flow behavior and its variability within individual
cells, (ii) the ability to simulate hydraulic jumps that occur when supercritical flow in
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steep slope meets subcritical flow in flat landscapes, (iii) the ability to simulate local
flood peaks and flow impulses resulting from bores.

When diffusion and kinematic flow processes have to coexist in the same flow
domain, the diffusion flow process is governed by a nonlinear parabolic partial dif-
ferential equation (PDE) and the kinematic flow process is governed by a nonlinear
hyperbolic PDE, both resulting from approximations of the St. Venant equations. De-
pending on the depth, the slope, and the magnitude of the physical parameters, these
flows represent both supercritical and subcritical flows in the system. If the model is
designed for multi-year simulations, large time steps are unavoidable if the run time is
to be brought down, while smaller time steps are needed if the solution is to be stable.

Traditional diffusion flow models (Akan and Yen 1981, Lal 1998) use central
differencing in the solution of the governing parabolic PDE’s. However, central differ-
encing methods are not suitable for solving hyperbolic problems. The result of using
central difference methods to simulate kinematic flow can range from generation of
nonlinear numerical oscillations to model instability. To avoid these problems, numer-
ical methods for wet-bed and dry-bed overland flow have to solve a wide range of flow
conditions from kinematic to diffusion while being extremely stable and robust with
very large time steps.

Recent developments in the field of magneto hydro dynamics (MHD) and com-
putational fluid dynamics (CFD) have contributed to the successful resolution of some
of these challenges. There are new solution methods such as the TVD Lax-Friedrichs
method (TVDLF) explained by Yee (1989) and Toth et al., (1998) that are useful in solv-
ing non-equilibrium type hyperbolic-parabolic problems using large time steps. Stable
non-oscillatory fully implicit formulations are possible with these numerical schemes
with which the final discrete form is solved using Newton’s method. Both first order
and second order spatial accuracies are possible with the approach. The TVD condition
is used to make the solution essentially non-oscillatory. Some examples are shown in
the paper.

GOVERNING EQUATIONS
St. Venant equations solved in the current models consist of an equation for conserva-
tion of mass and conservation of momentum. The equation for conservation of mass
can be expressed in terms of the depth h and the discharge per unit width, q as

∂h
∂t

+
∂q(h)

∂x
= 0 (1)

Water level in this problem is expressed as H = h + z. The discharge q can be ex-
plained using the flow velocity u as q = u(H − z). After neglecting the inertia terms,
the equation for conservation of momentum reduces to S f = ∂H

∂x where S f = friction
slope defined using the Manning equation. The Manning equation is used to derive an
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expression for q in terms of h and S f .

q =
h

5
3
√

S f

nb
(2)

where nb = Manning constant; S f = ∂H
∂x for diffusion flow; S f = ∂z

∂x for kinematic flow.
Linearization of (1) and (2) result in the following expressions that is useful in the
analysis.

c =
∂q
∂h

=
5
3

h
2
3
√

S0
nb

(3)

Kd =
∂q
∂S0

=
1
2

h
5
3

nb
√

S0
(4)

where c = celerity of the wave; Kd = hydraulic diffusivity.
THE NUMERICAL FORMULATIONS
The scalar conservative equation (1) without the source term is solved using a finite
volume formulation that is derived in terms of flux functions as

∂hi

∂t
=

∆t
∆x

(qn+1
i− 1

2
−qn+1

i+ 1
2
) (5)

where qn+1
i+ 1

2
= numerical flux function at wall i+ 1

2 . Figure 1 shows a definition sketch.
The flux function has to follow the rule q(hi,hi) = q(hi) to enforce the consistence
condition for the scheme. Both the diffusion flow algorithm and the TVDLF algorithm
described below are based on this equation.
The diffusion flow model
When using the diffusion flow method, the diffusion flux is described using

qi+ 1
2
= −1

2

h
5
3
i+ 1

2

max(|Si+ 1
2
| 1

2 ,δs)
sgn(Si+ 1

2
) (6)

where hi+ 1
2

is defined as max(0,0.5(hi +hi+1)); δs is used to avoid the singularity; Si+ 1
2

is defined as
Si+ 1

2
=

hi+1 + zi+1 −hi − zi

∆x
(7)

A value of δs = 10−5 is suitable for many applications. There are many ways to calcu-
late hi+ 1

2
that are not discussed here.

The Total Variation Diminishing Lax-Friedrichs Scheme (TVDLF)
The purpose of the TVD formulation developed by Harten (1983) is to prevent the gen-
eration of spurious oscillations. Yee (1989) explained a number of design principles
for TVD schemes. TVD property automatically preserves monotonicity and prevents
creation of spurious oscillations. The condition for a numerical solution to be TVD is

TV (hn+1) ≤ TV (hn) (8)
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where the total variation TV (h) is defined as

TV (hn) =
∞

∑
j=−∞

|hn
j+1 −hn

j | =
∞

∑
j=−∞

|∆hn
j+ 1

2
| (9)

and ∆hn
j+ 1

2
= hn

j+1−hn
j . It is possible to obtain a first order TVD scheme by modifying

the central difference scheme to be an upwind scheme or by limiting the flux. It has
been shown that the Lax-Friedrichs method satisfies the TVD property.

The numerical flux function qi+ 1
2

in (1) for the TVDLF method can be calculated
using a variety of methods. The method used here is

qi+ 1
2
=

1
2(qi +qi+1)−φi+ 1

2
(10)

For surface water flow, this can be written as

qi+ 1
2
= −1

2

[

h
5
3
i +h

5
3
i+1

] |Si+ 1
2
|

1
2

nb
sgn(Si+ 1

2
)− 1

∆x
|cmax

i+ 1
2
|(hi+1−hi) (11)

In the 1-D case, a tri-diagonal system of equations can be obtained from this using
(11) when the Newton’s method is applied to solve the finite volume approximation of
the governing equation (1). Thomas algorithm is useful in solving the linear equation
resulting from this approach. The tri-diagonal system can be defined as

ai = +
∂qi− 1

2

∂hi−1
(12)

bi = 1+
∂qi− 1

2

∂hi
−

∂qi+ 1
2

∂hi
(13)

ci = −
∂qi+ 1

2

∂hi+1
(14)

ri = qi− 1
1
−qi+ 1

2
(15)

The right hand side ri can be expanded as

ri =
∆t
2

[

qi−1 +qi−
1

∆x
|ci− 1

2
|max(hi−hi−1)

]

− ∆t
2

[

qi +qi+1 −
1

∆x
|ci+ 1

2
|max(hi+1 −hi)

]

(16)
An analytical estimate can be obtained for the Jacobian for the specific case of (10) or
(11) as

ai = −1
2

∆t
∆x

(ci− 1
2
+ |ci− 1

2
|max +

1
∆x

Ki− 1
2
) (17)

bi = 1− 1
2

∆t
∆x

(|ci− 1
2
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2
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2
)) (18)
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2
) (19)
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and the system of linear equations is represented as

aixi−1 +bixi + cixi+1 = ri (20)

and ri = right hand side vector component.
NUMERICAL EXPERIMENTS
Numerical experiments are carried out to demonstrate certain behaviors of the diffu-
sion flow method and the stability of the TVDLF method under extreme numerical
conditions and with large time steps. One dimensional tests are used in both cases. To
illustrate the numerical oscillations in diffusion flow models when simulating flow in
steep canals, an experiment is conducted using a 1-D model with 500 m long and 870
m wide segments. A discharge rate of 10 m2/s is applied at the upstream end, and a
uniform flow condition is allowed at the downstream end. When a time steps of one
day is used, this model is stable only when the Manning constant exceeds an unrealistic
value of about 70. Figure 2 shows the solution when the Manning roughness is 70.
In the figure, the water depth fluctuates between 4.9 m and 2.3 m in the middle of the
canal while the analytical solution for steady state depth is 3.78 m. The two snap shots
shown in Figure 2 are 6 days apart. An animation of the solution shows that perfectly
normal-looking water waves of a 12 day period pass down the canal during the simula-
tion. Experimentation with variable time steps shows that these oscillations are created
due to numerical issues. Nonlinear waves in numerical models are explained by Yee
and Sewby (1992). The results show that diffusion flow models can be subjected to
numerical problems in addition to the applicability problems specified by Ponce et al.,
(1978) and truncation error problems described by Lal (2000).

Figure 3 shows the results of a test carried out using the TVDLF method. The
1-D model used for the test has segments of length 100 m and arbitrary bottom eleva-
tions. The Manning roughness used in the experiment is 0.03. Results show that the
TVDLF method is stable with one day time steps even if the inertia terms are neglected
in the formulation. The results also show that ponding takes place in the correct loca-
tion and steep flows are simulated without oscillations. These are desired behaviors of
any numerical method used for the type of wet and dry bottom conditions present in
surface water models. The experimentation has to continue to show that the method is
accurate for a wide range of conditions that are valuable to hydrologists.
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Figure 1: Mesh cells in a five cell 1-D problem
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Figure 2: Numerical waves in 1-D uniform flow. Slope=0.01, segment length=50.0 m,
time step=1 day, nb = 70
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Figure 3: Application of the TVDLF method for a 1-D problem with an irregular bottom
using a time step of 1 day
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